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Series of exact solutions of the Mises plasticity equations which possess helical symmetry are presented. They can be used to 
analyse the stress-strain state of circular rods and tubes acted upon by an internal pressure, an axial force and a torque. © 2004 
Elsevier Ltd. All rights reserved. 

In constructing exact solutions of problems in the theory of plasticity with the Mises yield condition in 
the axisymmetric and three-dimensional cases, it is usually necessary to act in the inverse mode, i.e. 
first to construct an exact solution and then to attempt to match an actual physical problem to it. 
Nevertheless, this approach enables one to solve many important practical problems of mechanics: to 
make estimates of limiting loads, to construct stress fields, etc. [1-5]. The number of solutions obtained 
in this manner remains extremely limited [5] and this remark from some 40 years ago still holds up to 
the present time. The small number of solutions does not permit one to study the structure of the 
equations thoroughly, to prove existence and uniqueness theorems and to test numerical calculations. 
The problem of the construction of exact solutions is therefore urgent at the present time. 

The group analysis of differential equations is one of the most powerful techniques for solving 
problems using inverse methods. Its use immediately enables one to construct new classes of exact 
solutions of the plasticity equations with the Mises yield condition [6]. The book by Annin et al. [7] was 
the first work in this area. 

We will consider the equations of ideal plasticity with the Mises yield condition in the tree-dimensional 
case, written in the cylindrical system of coordinates r, z and 0. We will introduced a new variable by 
the formula ~ = z + k0 and we shall assume that all of the components of the velocity vector u, ~) and 
w and the hydrostatic pressurep depend solely on the two variables r and {. The equations in terms of 
stresses have the form 

- -  "t" ~SrOr r ---~-=-kOSr° + ~ + 2Sr--r- So - OPor 

OSro k~So ~Soz + 2Sro kOp 
~---~ + r - ~  + ~ r = rO t 

3S~ z k~So OS z Srz _ ~P 
- 

2 2 2 2 2 
S r + S o + S z + 2(Sro + Srz + Soz ) = 2k~, S r + S o + S  z = 0 

(1) 

S r = ~u r, S o = )~r-~(kv~+u), S z = ~o~ 

2St0 = ~.(r-lku{ + r(r-ll))r), 2Srz = ~(1)~-t-(l)r) , 2Soz = )~(r-lkol{ + v{) 

Here, Sr, So, Sz, Sro , Srz , Soz , are the components of the stress tensor and k s is the yield point. 
System (1) describes the plastic flow of a substance under the condition of helical symmetry. When 

k= 0 and v = 0, these equations become the equations of axisymmetric deformation and possess a higher 
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degree of symmetry compared with them. This enablesus not only to construct generalized axisymmetric 
solutions [6] but also solutions which do not have axisymmetric analogues. 

We will seek a solution of system (1) in the form 

u = u(r)sin~, 1) = o(r)cos~,  ol = ol(r)cos~, p = p ( r , { )  

Suppose S~o = Srz = 0. Then, the remaining components of the stress tensor deviator depend solely 
on the single variable r. I f p  = p(r) ,  the second and the third equations of system (1) are identically 
satisfied and the first equation serves to determine p(r).  

In this case, we obtain the system of ordinary differential equations 

ku + r v ' -  v = O, o~' + u = O, r u ' - k ~ ) +  u - o ~  = 0 

for determining the functions u, v and w from system (1), which reduces to Bessel's equation 

r 2 u " + r u ' + ( r 2 + k  2 -  1)u = 0 

Solving this equation, we obtain 

u = C i J v + C 2 Y v ,  v 2 = 1 - k  2 

When Ikl --- 1, the function u takes real values. If, however, Ikl > 1, it is possible to use the integral 
representation of a Bessel function 

Jv  ~-~ 

M2 
2(z/2) v . 2v 

F(V + l/2)g 1/2 I cos(zcost)sm tdt 
0 

taking account of just the real part. 
Finally, the solution has the form (when Ca = 0) 

u = AJvsin {, 

r r 

l ~ = - A r k c o s { I J v r - l d r ,  o ) = - A c o s ~ I J v d r  

0 0 

where Jv is the Bessel function of imaginary argument which satisfies the condition Jr(0) = 0 for all 
v > 0 and A is an arbitrary constant. 

In the case of non-zero components of the stress tensor deviator and the hydrostatic pressure, we 
have 

2.-1/2 
S r = - ( l + f ) S o ,  S o = k s ( l + f + f 2 + ~ p )  , Sz = f S  ° 

r sz Soz (2) 
p = S r - I ( 2 + f ) S o r - l d r ,  Soz = q)S0; f = So, ~P - So 

(I 

This solution can be interpreted, in particular whenA > 0, as the plastic flow of a circular tube acted 
upon by an internal pressurep,  an axial force N and a torque M for which 

b b 

Orlr=a : - P '  Orlr=b = O, N =  2gIozrdr ,  M =  2r~ISozrdr 
a a 

where a and b are the internal and external radii of the tube. When k = 0 and v = 0, this solution was 
constructed by Hill [5]. 

The system of equations (1) admits of a Lie algebra of operators with the basis 

A1 = ~ ,  A2 = Oto, A3 = Op, A4 = uOu + 19~o + t.OOto, A5 = rOu 



Plastic flows of a Mises medium with helical symmetry 135 

The optimal system of subalgebras for the Lie algebra L5 has the form 

01: A2 + A5, A4, Az, A 5 

02: (A 2 - A 5, A4), (A2, A4), (As, A4), (A2, As) 

Here  we have taken into account that the operatorsA1, A 3 generate the centre of the Lie algebra Ls. 
The optimal system of subalgebras which has been constructed enables one to enumerate all of the 

different invariant solutions of Eqs (1), apart from symmetry transformations. 
We now construct a solution which is invariant with respect to the subalgebra A 4 - A 1. One must 

seek this solution in the form 

u = uo(r )e  ~, v = Vo(r)e ~, co = O~o(r)e ~, p = po(r )  

The zero subscripts are omitted everywhere below. 
It follows from Eqs (1) that 

Sro = Cl/r  2, Srz = C2/r 

If the arbitrary constants C1 and C 2 are  equal to zero, we obtain the system of ordinary differential 
equations 

k u ' + r v ' - v  = O, o~'+u = O, r u ' + k v + u + o ~  = 0 (3) 

It reduces to Bessel's equation, the solution of which has the form 

u = A J v ( r  ), v 2 = 1 +k  2 (4) 

Assuming that the function u is bounded when r = 0 (otherwise, we add a MacDonald function to 
expression (4)), we obtain 

r 

u = A Jr,  CO = - I u d r ,  k u  = - r c o -  r u ' -  u 

o 

where Jv is the Bessel function of imaginary argument which satisfies the condition Jv(0) = 0 for all 
v > 0 and A is an arbitrary constant. The stressed state is described by formulae (2). The mechanical 
interpretation is the same as in the previous case. 

If we put k = 0, v = 0, then M = 0 and we obtain the axisymmetric solution [8], which described the 
plastic flow of a cylinder with a stress-free lateral surface. 

The stressed state (2) is obtained if we seek the solution of Eqs (1) in the form (subject to the condition 
= = O )  

u = u0(r)sh ~, v = u0(r)ch ~, w = w0(r)ch ~, p = po(r )  

This leads to system (3), and the solution has precisely the same mechanical interpretation as was 
mentioned above, 

We will seek an invariant solution in the subgroupA1 + (zA~ 2 -Jr (L,~ 5 in the form 

u = f ( r ) ,  c o - o ~  = tp(r),  v - y ~ r  = ~ ( r ) ,  p = p ( r ) ,  y = ~3lo~ 

We substitute these relations into system (1). 
From the incompressibility equation we have (C1 and C2 are constants) 

f = C l r + C 2  r- l ,  C 1 = (t:z+),k)/2 

Suppose q0 = ~ = 0; then Sro = Srz = 0, and the remaining components of the stress tensor deviator 
have the form 
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S r = ~, (C 1 - C 2 r - 2 ) ,  S O = ~,(kqt + C l + C2r -2 ) ,  S z = Ct)~, 2Soz = ~,(t~kr -1 +~[r) 

r 

p = S r "1" I~,(-- k 7 - 2C2r-2)dr  
a 

2 k ~ , - 2 r  4 = l ( C 2  - C l r 2 )  2 + [(k~ + C 1 ) r  2 + C2] 2 + (~(r 3 + akr)12 + aZr4J 

This solution describes the limiting state of a tube sited upon by a constant internalpressure P0, an 
axial force N and a torque M. When k = 0, v = 0 it becomes the axisymmetric solution [3] or a solution 
[1] which describes the compression of the plastic layer by the coaxial cylindrical surfaces. 

It is well known [9] that helical surfaces z + k0 = const in a twisted plastic rod possess a number of 
remarkable properties: they serve as the boundary between the rigid and plastic domains and are the 
most probable fracture surfaces. We will now construct a solution which describes plastic flow with such 
surfaces. 

We will seek a solution of system of equations (1) in the form 

u = O, v = - r t p ( { ) ,  co = ktp({) ,  p = p ( r )  (5) 

Substituting expressions (5) into system (1), we obtain the exact solution 

u = 0, v =-rq~(~),  co = kq)({), p = p(r)  

F 
(Yr = S r - P  -- 2zksarctg~ + c 

rk 
~0 = S0 - P = - 2~ks -T" '~  + ~r (6) 

r - + g -  

rk 
Oz = Sz - P = 2~ks-7"--75_ 9 + Or 

r - + k -  

r 2 k 2 
Sro = Srz = O, Soz = )~k~r 2+-k2, ~ = signtp'(~) 

where ~ is an arbitrary smooth function and c is an arbitrary constant. 
This solution can be used to describe the plastic flow of a circular rod of radius R acted upon by a 

tensile force and a torque. Suppose the lateral surface of the rod stress-free and that we require to satisfy 
the condition Soz = 0. We obtain from this that k = _+R. The velocity w = Rcp(RO) is specified at the 
end z = 0. Since the function q0 is continuous, we obtain that, here, it is a 2n-periodic function, and this 
means that it has at least one point where q0' = 0, that is, a helical surface ~0 exists such that q0'(~0) = 
0. It follows from formula (6) that, in accordance with the reasoning in [9], which argues that the surfaces 
z + k0 = const can be separated into rigid and plastic regions, a rigid domain arises along this surface 
in the rod. These surfaces are also the most probable fracture surfaces. 

It follows from formula (6) that, by choosing the function % it is possible to specify different plastic 
flows and, in particular, it is possible to describe the technological process of the extrusion of a material 
between two helical surfaces ~ = C1, ~ = C 2. This process could serve as a basis, for example, for the 
manufacture of drills. 

We will now point one further exact solution of Eqs (1) 

u = ~ (cr  - | -  (a + k b ) r )  

o = ~br  + k (a  + k b ) r l n r  + ckr-1/2  + c l r  

O) = ~2a + (a + kb)r2 /2  - c l n r  + c 2 

where a, b, c, Cl, c 2 are arbitrary constants. The components of the strain rates are given by the expressions 
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e r = - ~ ( c r  - 2 + ( a + k b ) ) ,  e o = 2 k b ~ + ~ ( c r  - l + ( a + k b ) ) ,  e z = 2~a 

ero = erz = O, eoz = 2 a k ~ r - l  + 2kr~  

In  this case, only  a single r igid d o m a i n  exists and  it is given by the  equa t ion  ~ = 0. The  a b o v e - m e n t i o n e d  
solut ion can be  used to descr ibe  the plastic flow of  a circular  tube which has been  cut along the generatrix.  

R E F E R E N C E S  

1. IVLEV, D. D., Theory of Ideal Plasticity. Nauka, Moscow, 1966. 
2. ISHLINSKII, A. Yu., The axisymmetric problem of the theory of plasticity and the Brinell test. Prikl. Mat. Mekh., 1944, 8, 3, 

201-224. 
3. ZADOYAN, M. A., Three dimensional problems of the Theory of Elasticity. Nauka, Moscow, 1992. 
4. PRAGER, W., Three-dimensional plastic flow under uniform stress. Rev. Faculty Sci., Univ. Istanbul, 1954, 19, 1 23-27. 
5. HILL, R., The Mathematical Theory of Plasticity. Clarendon Press, Oxford, 1950. 
6. OLSZAK, W., MROZ, Z. and PERZYNA, P., Recent Trends in the Development of the Theory of Plasticity. Pergamon Press, 

London, 1963. 
7. ANNIN, B. D., BYTEV, V. O. and SENASHOV, S. I., Group Properties of the Equations of Elasticity and Plasticity. Nauka, 

Novosibirsk, 1985. 
8. ANNIN, B. D., An exact solution of an axisymmetric problem of ideal plasticity, Zh. Prik. Mekh. Tekh. Fiz., 1973, 2, 171-172. 
9. TOMAS, T. Y., Plastic Flow and Fracture in Solids. Academic Press, London, 1961. 

Translated by E.L.S. 


